Cognitive Abilities

Professional Abilities

Concept: The Project Plan, Scope, SOW (Statement of Work), Work Definition, Procurement Management.

Tools: WBS (Work Breakdown Structure), Gantt Charts, Activity Charts, Network Diagrams, PERT & CPM, Crashing & Resource Planning.

Planning and Scheduling Charts and Graphs: Milestone, Run Chart, Control Chart, Fishbone Diagram.

Cost Analysis: Process / Product Marginal Cost – Break-even Costing, Variance Analysis, Make or Buy Decision.

Financial Discipline: Preparation of Different Budgets, Maintaining of Sectional Accounts, Cash Flow Control and Analysis, Working Capital Management, Analysis of Expenditure, Balance Sheet – Basics, Return on Investments

Contracts: Various forms of Contracts – Government, FIDIC, ICE; Legal Basis of Contract – Indian Contract Act and Law of Torts; Provisions regarding Employer, Engineer and Contractor / Supplier – Duties and Responsibilities; General Areas of Dispute; Types of Contract.

Disputes and Arbitration: Contract Provisions – Mutual discussions and amicable settlement as a first step; Dispute Resolution Expert / Board; Arbitration – Location of Arbitration, Single Arbitrator, Two with umpire – Departmental or Independent as provided in the Contract, Speaking Awards.

- Ministry of Environment and Forests: Key Functions;
- Central Pollution Control Board: Key Functions;
- Environmental Management System (ISO:14001-1996): General Requirements;
- Environmental Impact Assessment, Kyoto Protocol.

- Concepts of Occupational Health Hazard and Risks;
- Principles and Methods of Hazard Identification and Risk Assessment;
- Human Behavioural Aspects of Risk Management;
- Safety Provisions as per the Factory Act 1948.

Ethics: Code of Professional Behaviour and Accountability. SA8000 (ILO); Code of Ethics for Professional Engineers – ASME, IEEE, IE(I) etc;

Equal Opportunities, Gender Issues, Professional Obligation of Engineers; Sex and Gender; Family;

Women and Work: Women’s Participation in Development; Concepts of Sexual Harassment; Personal Laws – An Overview (Property Rights / Family Laws); Social Functions of Science and Technology.

Technical Abilities

Units and Measurements; Kinematics; Laws of Motion; Work, Energy and Power; Motion of System of Particles and Rigid Body; Gravitation; Properties of Bulk Matter; Thermodynamics; Kinetic Theory of Gases.

Electrostatics; Current Electricity; Magnetic Effect of Current & Magnetism; Electromagnetic Induction & Alternating Current; Electromagnetic Waves; Optics; Dual Nature of Matter; Atoms & Nuclei; Electronic Devices; Communication Systems.

Structure of Atom; Classification of Elements & Periodicity in Properties; Chemical Bonding and Molecular Structure; Gases and Liquids; Thermodynamics; Equilibrium; Organic Chemistry; Hydrocarbons.

Solid State; Solutions; Electrochemistry; Chemical Kinetics; Surface Chemistry; Isolation of Elements; Coordination Compounds; Alcohols, Phenols and Ethers; Aldehydes, Ketones and Carboxylic Acids; Biomolecules; Polymers.

Basics: Atmosphere: Properties, standard atmosphere. Classification of aircraft. Airplane (fixed wing aircraft) configuration and various parts.

**Airplane performance :** Pressure altitude; equivalent, calibrated, indicated air speeds; Primary flight instruments: Altimeter, ASI, VSI, Turn-bank indicator. Drag polar; takeoff and landing; steady climb & descent, absolute and service ceiling; cruise, cruise climb, endurance or loiter; load factor, turning flight, V-n diagram; Winds: head, tail & cross winds.

**Static stability :** Angle of attack, sideslip; roll, pitch & yaw controls; longitudinal stick fixed & free stability, horizontal tail position and size; directional stability, vertical tail position and size; dihedral stability. Wing dihedral, sweep & position; hinge moments, stick forces.

**Dynamic stability :** Euler angles; Equations of motion; aerodynamic forces and moments, stability & control derivatives; decoupling of longitudinal and lateral-directional dynamics; longitudinal modes; lateral-directional modes.

Central force motion, determination of trajectory and orbital period in simple cases.

Orbit transfer, in-plane and out-of-plane.

**Basic Fluid Mechanics:** Conservation laws: Mass, momentum (Integral and differential form);

**Potential flow theory:** sources, sinks, doublets, line vortex and their superposition; Viscosity, Reynold’s number.

**Airfoils and wings:** Airfoil nomenclature; Aerodynamic coefficients: lift, drag and moment; Kutta-

**Joukoswki theorem;** Thin airfoil theory, Kutta condition, starting vortex; Finite wing theory: Induced drag, Prandtl lifting line theory; Critical and drag divergence Mach number.

**Compressible Flows:** Basic concepts of compressibility, Conservation equations; One dimensional compressible flows, Fanno flow, Rayleigh flow; Isentropic flows, normal and oblique shocks, Prandtl-Meyer flow; Flow through nozzles and diffusers.

Elementary ideas of viscous flows including boundary layers; Wind Tunnel Testing:

Measurement and visualization techniques.

**Strength of Materials:** States of stress and strain. Stress and strain transformation. Mohr’s Circle. Principal stresses. Three-dimensional Hooke’s law. Plane stress and strain; Failure theories: Maximum stress, Tresca and von Mises; Strain energy. Castigliano’s principles. Analysis of statically determinate and indeterminate trusses and beams. Elastic flexural buckling of columns.

**Flight vehicle structures:** Characteristics of aircraft structures and materials. Torsion, bending and flexural shear of thin-walled sections. Loads on aircraft.

**Structural Dynamics:** Free and forced vibrations of undamped and damped SDOF systems. Free vibrations of undamped 2-DOF systems.

Vibration of beams. Theory of elasticity: Equilibrium and compatibility equations, Airy’s stress function.

**Basics:** Thermodynamics, boundary layers and heat transfer and combustion thermochemistry.

**Thermodynamics of aircraft engines:** Thrust, efficiency and engine performance of turbojet, turboprop, turbo shaft, turbofan and ramjet engines, thrust augmentation of turbojets and turbofan engines.

Aerothermodynamics of non-rotating propulsion components such as intakes, combustor and nozzle.

**Axial compressors:** Angular momentum, work and compression, characteristic performance of a single axial compressor stage, efficiency of the compressor and degree of reaction.

**Axial turbines:** Axial turbine stage efficiency.

**Centrifugal compressor:** Centrifugal compressor stage dynamics, inducer, impeller and diffuser.

**Rocket propulsion:** Thrust equation and specific impulse, vehicle acceleration, drag, gravity losses, multi-staging of rockets. Classification of chemical rockets, performance of solid and liquid propellant rockets.

**Machine Design:** Design and selection of machine elements – gears, pulleys, chains and sprockets and belts; overload safety devices used in farm machinery; measurement of force, torque, speed, displacement and acceleration on machine elements.

**Farm Machinery:** Soil tillage; forces acting on a tillage tool; hitch systems and hitching of tillage implements; functional requirements, principles of working, construction and operation of manual, animal and power operated equipment for tillage, sowing, planting, fertilizer application, inter-cultivation, spraying, mowing, chaff cutting, harvesting, threshing and transport; testing of agricultural machinery and equipment; calculation of performance parameters – field capacity, efficiency, application rate and losses; cost analysis of implements and tractors.

**Sources of Power:** Sources of power on the farm – human, animal, mechanical, electrical, wind, solar and biomass; bio-fuels.

**Farm Power:** Thermodynamic principles of I.C. engines; I.C. engine cycles; engine components; fuels and combustion; lubricants and their properties; I.C. engine systems – fuel, cooling, lubrication, ignition, electrical, intake and exhaust; selection, operation, maintenance and repair of I.C. engines; power efficiencies and measurement; calculation of power, torque, fuel consumption, heat load and power losses.

**Tractors and Powertillers:** Type, selection, maintenance and repair of tractors and powertillers; tractor clutches and brakes; power transmission systems – gear trains, differential, final drives and power take-off; mechanics of tractor chassis; traction theory; three point hitches- free link and restrained link operations; mechanical steering and hydraulic control systems used in tractors; tractor tests and performance.

Human engineering and safety in design of tractor and agricultural implements.

Soil and Water Conservation Engineering

**Fluid Mechanics:** Ideal and real fluids, properties of fluids; hydrostatic pressure and its measurement; hydrostatic forces on plane and curved surface; continuity equation; Bernoulli’s theorem; laminar and turbulent flow in pipes, Darcy- Weisbach and Hazen-Williams equations, Moody’s diagram; flow through orifices and notches; flow in open channels.

**Soil Mechanics:** Engineering properties of soils; fundamental definitions and relationships; index properties of soils; permeability and seepage analysis; shear strength, Mohr’s circle of stress, active and passive earth pressures; stability of slopes.

**Hydrology:** Hydrological cycle and components; meteorological parameters, their measurement and analysis of precipitation data; runoff estimation; hydrograph analysis, unit hydrograph theory and application; stream flow measurement; flood routing, hydrological reservoir and channel routing.

**Surveying and Leveling:** Measurement of distance and area; instruments for surveying and leveling; chain surveying, methods of traversing; measurement of angles and bearings, plane table surveying; types of leveling; the dolomite traversing; contouring; computation of areas and volume.

**Soil and Water Erosion:** Mechanics of soil erosion, soil erosion types, wind and water erosion, factors affecting erosion; soil loss estimation; biological and engineering measures to control erosion; terraces and bunds; vegetative waterways; gully control structures, drop, drop inlet and chute spillways; earthen dams.

**Watershed Management:** Watershed characterization; land use capability classification; rain water harvesting structures, check dams and farm ponds.

**Soil-Water-Plant Relationship:** Water requirement of crops; consumptive use and evapotranspiration; measurement of infiltration, soil moisture and irrigation water infiltration.

**Irrigation Water Conveyance and Application Methods:** Design of irrigation channels and underground pipelines; irrigation scheduling; surface, sprinkler and micro irrigation methods, design and evaluation of irrigation methods; irrigation efficiencies.

**Agricultural Drainage:** Drainage coefficient; planning, design and layout of surface and sub-surface drainage systems; leaching requirement and salinity control; irrigation and drainage water quality and reuse.

**Groundwater Hydrology:** Groundwater occurrence; Darcy’s Law, steady flow in confined and unconfined aquifers, evaluation of aquifer properties; groundwater recharge.

**Wells and Pumps:** Types of wells, steady flow through wells; classification of pumps; pump characteristics; pump selection and installation.

**Drying:** Psychrometry – properties of air-vapors mixture; concentration and drying of liquid foods –evaporators, tray, drum and spray dryers; hydrothermal treatment; drying and milling of cereals, pulses and oilseeds.

**Size Reduction and Conveying:** Mechanics and energy requirement in size reduction of granular solids; particle size analysis for comminuted solids; size separation by screening; fluidization of granular solids-pneumatic, bucket, screw and belt conveying; cleaning and grading; effectiveness of grain cleaners; centrifugal separation of solids, liquids and gases.

**Processing and By-product Utilization:** Processing of seeds, spices, fruits and vegetables; By-product utilization from processing industries.

**Storage Systems:** Controlled and modified atmosphere storage; perishable food storage, godowns, bins and grain silos.

**Heat and Mass Transfer:** Steady state heat transfer in conduction, convection and radiation; transient heat transfer in simple geometry; working principles of heat exchangers; diffusive and convective mass transfer; simultaneous heat and mass transfer in agricultural processing operations; material and energy balances in food processing systems; water activity, sorption and desorption isotherms.

**Preservation of Food:** Kinetics of microbial death – pasteurization and sterilization of milk and other liquid foods; preservation of food by cooling and freezing; refrigeration and cold storage basics and applications.

Behavioral characteristics and applications of different building materials viz. mud, timber, bamboo, brick, concrete, steel, glass, FRP, AAC, different polymers, composites.

Building construction techniques, methods and details; Building systems and prefabrication of building elements; Principles of Modular Coordination; Estimation, specification, valuation, professional practice;

Construction planning and equipments; Project management techniques e.g. PERT, CPM etc.

Principles of strength of materials; Design of structural elements in wood, steel and RCC; Elastic and

Limit State design; Structural systems in RCC and Steel; Form and Structure; Principles of Pre-stressing;

High Rise and Long Span structures, gravity and lateral load resisting systems; Principles and design of disaster resistant structures.

Ecosystem- natural and man-made ecosystem; Ecological principles; Concepts of Environmental Impact Analysis; Environmental considerations in planning and design; Thermal comfort, ventilation and air movement; Principles of lighting and illumination; Climate responsive design; Solar architecture;

Principles of architectural acoustics; Green Building- Concepts and Rating; ECBC; Building Performance Simulation and Evaluation; Environmental pollution- types, causes, controls and abatement strategies.

Concepts and theories of urban design; Public Perception; Townscape; Public Realm; Urban design interventions for sustainable development and transportation; Historical and modern examples of urban design; Public spaces, character, spatial qualities and Sense of Place; Elements of urban built environment– urban form, spaces, structure, pattern, fabric, texture, grain etc; Principles, tools and techniques of urban design; Urban renewal and conservation; Site planning; Landscape design; Development controls – FAR, densities and building byelaws.

Planning process; Types of plans – Master Plan, City Development Plan, Structure Plan, Zonal Plan, Action Area Plan, Town Planning Scheme, Regional Plan; Salient concepts, theories and principles of urban planning; Sustainable urban development; Emerging concepts of cities – Eco-City, Smart City, Transit Oriented Development (TOD), SEZ, SRZ etc.

Housing; Concepts, principles and examples of neighbourhood; Housing typologies; Slums; Affordable Housing; Housing for special areas and needs; Residential densities; Standards for housing and community facilities; National Housing Policies, Programs and Schemes.

Tools and techniques of Surveys – Physical, Topographical, Land use and Socio- economic Surveys;

Methods of non-spatial and spatial data analysis; Graphic presentation of spatial data; Application of G.I.S and Remote Sensing techniques in urban and regional planning; Decision support system and Land Information System.

Urban Economics; Law of demand and supply of land and its use in planning; Social, Economical and environmental cost benefit analysis; Techniques of financial appraisal; Management of Infrastructure Projects; Development guidelines such as URDPFI; Planning Legislation and implementation – Land Acquisition Act, PPP etc.; Local self-governance.

Services, Infrastructure and Transportation Building Services: Water supply; Sewerage and drainage systems; Sanitary fittings and fixtures; Plumbing systems; Principles of internal and external drainage system; Principles of electrification of buildings;

Intelligent Buildings; Elevators and Escalators – standards and uses; Air-Conditioning systems;

Firefighting Systems; Building Safety and Security systems.

Urban Infrastructure: Transportation, Water Supply, Sewerage, Drainage, Solid Waste Management, Electricity and Communications.

Process and Principles of Transportation Planning and Traffic Engineering: Road capacity; Traffic survey methods; Traffic flow characteristics; Traffic analyses and design considerations; Travel demand forecasting; Land-use – transportation – urban form inter-relationships; Design of roads, intersections, grade separators and parking areas; Hierarchy of roads and level of service; Traffic and transport management and control in urban areas; Mass transportation planning; Para- transits and other modes of transportation, Pedestrian and slow moving traffic planning; Intelligent Transportation Systems.

Principles of water supply and sanitation systems: water treatment; Water supply and distribution system;

Water harvesting systems; Principles, Planning and Design of storm water drainage system; Sewage disposal methods; Methods of solid waste management – collection, transportation and disposal; Recycling and Reuse of solid waste; Power Supply and Communication Systems, network, design and guidelines.

Voltage and current sources: independent, dependent, ideal and practical; v-i relationships of resistor, inductor, mutual inductor and capacitor; transient analysis of RLC circuits with dc excitation.

Kirchoff’s laws, mesh and nodal analysis, superposition, Thevenin, Norton, maximum power transfer and reciprocity theorems.

Peak, average and rms values of ac quantities; apparent-, active- and reactive powers; phasor analysis, impedance and admittance; series and parallel resonance, locus diagrams, realization of basic filters with R, L and Celements.

Continuous and Discrete Signal and Systems: Periodic, aperiodic and impulse signals; Sampling theorem; Laplace, Fourier and z-transforms; transfer function, frequency response of first and second order linear time invariant systems, impulse response of systems; convolution, correlation. Discrete time system: impulse response, frequency response, pulse transfer function; DFT; basics of IIR and FIR filters.

Characteristics and applications of diode, Zenerdiode, BJT and MOSFET; small signal analysis of transistor circuits, feedback amplifiers. Characteristics of operational amplifiers; applications of opamps: difference amplifier, adder, subtractor, integrator, differentiator, instrumentation amplifier,buffer.

Combinational logic circuits, minimization of Boolean functions. IC families: TTL and CMOS. Arithmetic circuits, comparators, Schmitt trigger, multi-vibrators, sequential circuits, flipflops, shift registers, timers and counters; sample-and-hold circuit, multiplexer. Characteristics of ADC and DAC (resolution, quantization, significant bits, conversion/settling time); basics of number systems, microprocessor and microcontroller: applications, memory and input- output interfacing; elements of data acquisition systems.

SI units, systematic and random errors in measurement, expression of uncertainty – accuracy and precision index, propagation of errors. PMMC, MI and dynamometer type instruments; dc potentiometer; bridges for measurement of R, L and C, Q-meter. Basics of control engineering – modeling system: transfer function and state-space model, stability analysis:time domain and frequency domain analysis.

Types of Instruments: Resistive, capacitive, inductive, piezoelectric, Hall Effect sensors and associated signal conditioning circuits; Optical sources and detectors: LED, Photo-diode, p-i- nandavalanchephotodiode (APD), light dependent resistor and their characteristics; basics of magnetic sensing; Interferometer: applications in metrology; basics of fiber optic sensing. Basics of LASERs.

Origin, nature, and types of Biosignals, Principles of sensing physiological parameters, types of transducers and their characteristics, Electrodes for bioelectric signals, Bioelectric signals and their characteristics. Biopotential Amplifiers, Noiseandarte facts and their management, Electrical Isolation (optical and electrical) and Safety of Biomedical Instruments. Generation, Acquisition, and signal conditioning and analysis of biosignals: ECG, EMG, EEG, EOG, Blood ERG, PCG, GSR. Principles of measuring blood pressure, Core temperature, volume & flow in arteries, veins and tissues – Lung volumes, respiration and cardiacrate.

Basic elements of human body-muscloskeletal system, respiratory system, circulatory system, excretory system, endocrine system, nervous system, digestive, nervous, immune, integumentary, and reproductive systems, Basics of cell and molecular biology.

Engineering Mechanics: Free-body diagrams and equilibrium; trusses and frames; virtual work; kinematics and dynamics of particles and of rigid bodies in plane motion; impulse and momentum (linear and angular) and energy formulations, collisions.

Hard Tissues: Definition of Stress and Strain; Deformation Mechanics. Bone structure & composition mechanical properties of bone, cortical and cancellous bones, viscoelastic properties, Maxwell & Voight models – anisotropy, Fatigue Analysis,

Soft Tissues: Structure, functions, material properties and modeling of Soft Tissues: Cartilage, Tendon, Ligament, Muscle – Hodgkin-Huxley Model.

Human Joints and Movements: Skeletal joints, forces and stresses in human joints, types of joint, biomechanical analysis joints, parameterization and analysis in Gait,

Biofluid mechanics: Flow properties of blood, Dynamics of fluid flow in the intact human cardiovascular system – modeling and experimental approaches, Pulse wave velocities in arteries, Measurement/Estimation of In-vivo elasticity of blood vessels.

Basic physics and Instrumentation of medical images in X-Ray, Ultrasound, CT, MRI, PET, FMRI, SPECT, and their characteristics.

Basic properties of biomaterials, biocompatibility, bioactivity, biodegradable materials, Fundamentals of implants and medical devices, drug delivery carriers, scaffolds for tissue engineering.

**Biochemistry:** Biomolecules-structure and functions; Biological membranes, structure, action potential and transport processes; Enzymes- classification, kinetics and mechanism of action; Basic concepts and designs of metabolism (carbohydrates, lipids, amino acids and nucleic acids) photosynthesis, respiration and electron transport chain; Bioenergetics

**Microbiology:** Viruses- structure and classification; Microbial classification and diversity(bacterial, algal and fungal); Methods in microbiology; Microbial growth and nutrition; Aerobic and anaerobic respiration; Nitrogen fixation; Microbial diseases and host-pathogen interaction

**
Cell Biology:** Prokaryotic and eukaryotic cell structure; Cell cycle and cell growth control; Cell-Cell communication, Cell signaling and signal transduction

**Molecular Biology and Genetics:** Molecular structure of genes and chromosomes; Mutations and mutagenesis; Nucleic acid replication, transcription, translation and their regulatory mechanisms in prokaryotes and eukaryotes; Mendelian inheritance; Gene interaction; Complementation; Linkage, recombination and chromosome mapping; Extra chromosomal inheritance; Microbial genetics (plasmids, transformation, transduction, conjugation); Horizontal gene transfer and Transposable elements; RNA interference; DNA damage and repair; Chromosomal variation; Molecular basis of genetic diseases

**Analytical Techniques:** Principles of microscopy-light, electron, fluorescent and confocal; Centrifugation- high speed and ultra; Principles of spectroscopy-UV, visible, CD, IR, FTIR, Raman, MS,NMR; Principles of chromatography- ion exchange, gel filtration, hydrophobic interaction, affinity, GC,HPLC, FPLC; Electrophoresis; Microarray

**Immunology:** History of Immunology; Innate, humoral and cell mediated immunity; Antigen; Antibody structure and function; Molecular basis of antibody diversity; Synthesis of antibody and secretion; Antigen-antibody reaction; Complement; Primary and secondary lymphoid organ; B and T cells and macrophages; Major histocompatibility complex (MHC); Antigen processing and presentation; Polyclonal and monoclonal antibody; Regulation of immune response; Immune tolerance; Hypersensitivity; Autoimmunity; Graft versus host reaction.

**Bioinformatics:** Major bioinformatics resources and search tools; Sequence and structure databases; Sequence analysis (biomolecular sequence file formats, scoring matrices, sequence alignment, phylogeny);Data mining and analytical tools for genomic and proteomic studies; Molecular dynamics and simulations (basic concepts including force fields, protein-protein, protein-nucleic acid, protein-ligand interaction)

Chemical engineering principles applied to biological system, Principle of reactor design, ideal and non-ideal multiphase bioreactors, mass and heat transfer; Rheology of fermentation fluids, Aeration and agitation; Media formulation and optimization; Kinetics of microbial growth, substrate utilization and product formation; Sterilization of air and media; Batch, fed-batch and continuous processes; Various types of microbial and enzyme reactors; Instrumentation control and optimization; Unit operations in solid-liquid separation and liquid-liquid extraction; Process scale-up, economics and feasibility analysis

Engineering principle of bioprocessing- Upstream production and downstream; Bioprocess design and development from lab to industrial scale; Microbial, animal and plant cell culture platforms; Production of biomass and primary/secondary metabolites; Biofuels, Bioplastics, industrial enzymes, antibiotics; Large scale production and purification of recombinant proteins; Industrial application of chromatographic and membrane based bioseparation methods; Immobilization of biocatalysts (enzymes and cells) for bioconversion processes; Bioremediation-Aerobic and anaerobic processes for stabilization of solid / liquid wastes

Totipotency; Regeneration of plants; Plant growth regulators and elicitors; Tissue culture and Cell suspension culture system: methodology, kinetics of growth and, nutrient optimization; Production of secondary metabolites by plant suspension cultures; Hairy root culture; transgenic plants; Plant products of industrial importance

Animal cell culture; media composition and growth conditions; Animal cell and tissue preservation; Anchorage and non-anchorage dependent cell culture; Kinetics of cell growth; Micro & macro-carrier culture; Hybridoma technology; Stem cell technology; Animal cloning; Transgenic animals

Restriction and modification enzymes; Vectors; plasmid, bacteriophage and other viral vectors, cosmids, Ti plasmid, yeast artificial chromosome; mammalian and plant expression vectors; cDNA and genomic DNA library; Gene isolation, cloning and expression ; Transposons and gene targeting; DNA labeling; DNA sequencing; Polymerase chain reactions; DNA fingerprinting; Southern and northern blotting; In-situ hybridization; RAPD, RFLP; Site-directed mutagenesis; Gene transfer technologies; Gene therapy

Steady and unsteady state mass and energy balances including multiphase, multi- component, reacting and non-reacting systems. Use of tie components; recycle, bypass and purge calculations; Gibb’s phase rule and degree of freedom analysis.

First and Second laws of thermodynamics. Applications of first law to close and open systems. Second law and Entropy. Thermodynamic properties of pure substances: Equation of State and residual properties, properties of mixtures: partial molar properties, fugacity, excess properties and activity coefficients; phase equilibria: predicting VLE of systems; chemical reaction equilibrium.

Fluid statics, Newtonian and non-Newtonian fluids, shell-balances including differential form of Bernoulli equation and energy balance, Macroscopic friction factors, dimensional analysis and similitude, flow through pipeline systems, flow meters, pumps and compressors, elementary boundary layer theory, flow past immersed bodies including packed and fluidized beds, Turbulent flow: fluctuating velocity, universal velocity profile and pressure drop.

Particle size and shape, particle size distribution, size reduction and classification of solid particles; free and hindered settling; centrifuge and cyclones; thickening and classification, filtration, agitation and mixing; conveying of solids.

Steady and unsteady heat conduction, convection and radiation, thermal boundary layer and heat transfer coefficients, boiling, condensation and evaporation; types of heat exchangers and evaporators and their process calculations. Design of double pipe, shell and tube heat exchangers, and single and multiple effect evaporators.

Fick’s laws, molecular diffusion in fluids, mass transfer coefficients, film, penetration and surface renewal theories; momentum, heat and mass transfer analogies; stage-wise and continuous contacting and stage efficiencies; HTU & NTU concepts; design and operation of equipment for distillation, absorption, leaching, liquid-liquid extraction, drying, humidification, dehumidification and adsorption.

Theories of reaction rates; kinetics of homogeneous reactions, interpretation of kinetic data, single and multiple reactions in ideal reactors, non-ideal reactors; residence time distribution, single parameter model; non-isothermal reactors; kinetics of heterogeneous catalytic reactions; diffusion effects in catalysis.

Measurement of process variables; sensors, transducers and their dynamics, process modeling and linearization, transfer functions and dynamic responses of various systems, systems with inverse response, process reaction curve, controller modes (P, PI, and PID); control valves; analysis of closed loop systems including stability, frequency response, controller tuning, cascade and feed forward control.

Inorganic chemical industries (sulfuric acid, phosphoric acid, chlor-alkali industry), fertilizers (Ammonia, Urea, SSP and TSP); natural products industries (Pulp and Paper, Sugar, Oil, and Fats); petroleum refining and petrochemicals; polymerization industries (polyethylene, polypropylene, PVC and polyester synthetic fibers).

Principles of process economics and cost estimation including depreciation and total annualized cost, cost indices, rate of return, payback period, discounted cash flow, optimization in process design and sizing of chemical engineering equipments such as compressors, heat exchangers, multistage contactors.

**Engineering Mechanics:** System of forces, free-body diagrams, equilibrium equations; Internal forces in structures; Friction and its applications; Kinematics of point mass and rigid body; Centre of mass; Euler’s equations of motion; Impulse-momentum; Energy methods; Principles of virtual work.

**Solid Mechanics:** Bending moment and shear force in statically determinate beams; Simple stress and strain relationships; Theories of failures; Simple bending theory, flexural and shear stresses, shear centre; Uniform torsion, buckling of column, combined and direct bending stresses.

**Structural Analysis:** Statically determinate and indeterminate structures by force/ energy methods; Method of superposition; Analysis of trusses, arches, beams, cables and frames; Displacement methods: Slope deflection and moment distribution methods; Influence lines; Stiffness and flexibility methods of structural analysis.

**Construction Materials and Management:** Construction Materials: Structural steel – composition, material properties and behaviour ; Concrete – constituents, mix design, short-term and long-term properties; Bricks and mortar; Timber; Bitumen. Construction Management: Types of construction projects; Tendering and construction contracts; Rate analysis and standard specifications; Cost estimation; Project planning and network analysis – PERT and CPM.

**Concrete Structures:** Working stress, Limit state and Ultimate load design concepts; Design of beams, slabs, columns; Bond and development length; Prestressed concrete; Analysis of beam sections at transfer and service loads.

**Steel Structures:** Working stress and Limit state design concepts; Design of tension and compression members, beams and beam- columns, column bases; Connections – simple and eccentric, beam-column connections, plate girders and trusses; Plastic analysis of beams and frames.

**Soil Mechanics:** Origin of soils, soil structure and fabric; Three-phase system and phase relationships, index properties; Unified and Indian standard soil classification system; Permeability – one dimensional flow, Darcy’s law; Seepage through soils – two-dimensional flow, flow nets, uplift pressure, piping; Principle of effective stress, capillarity, seepage force and quicksand condition; Compaction in laboratory and field conditions; One- dimensional consolidation, time rate of consolidation; Mohr’s circle, stress paths, effective and total shear strength parameters, characteristics of clays and sand.

**Foundation Engineering:** Sub-surface investigations – scope, drilling bore holes, sampling, plate load test, standard penetration and cone penetration tests; Earth pressure theories – Rankine and Coulomb; Stability of slopes – finite and infinite slopes, method of slices and Bishop’s method; Stress distribution in soils – Boussinesq’s and Westergaard’s theories, pressure bulbs; Shallow foundations – Terzaghi’s and Meyerhoff’s bearing capacity theories, effect of water table; Combined footing and raft foundation; Contact pressure; Settlement analysis in sands and clays; Deep foundations – types of piles, dynamic and static formulae, load capacity of piles in sands and clays, pile load test, negative skin friction.

**Fluid Mechanics:** Properties of fluids, fluid statics; Continuity, momentum, energy and corresponding equations; Potential flow, applications of momentum and energy equations; Laminar and turbulent flow; Flow in pipes, pipe networks; Concept of boundary layer and its growth.

**Hydraulics:** Forces on immersed bodies; Flow measurement in channels and pipes; Dimensional analysis and hydraulic similitude; Kinematics of flow, velocity triangles; Basics of hydraulic machines, specific speed of pumps and turbines; Channel Hydraulics – Energy-depth relationships, specific energy, critical flow, slope profile, hydraulic jump, uniform flow and gradually varied flow

**Hydrology:** Hydrologic cycle, precipitation, evaporation, evapo-transpiration, watershed, infiltration, unit hydrographs, hydrograph analysis, flood estimation and routing, reservoir capacity, reservoir and channel routing, surface run-off models, ground water hydrology – steady state well hydraulics and aquifers; Application of Darcy’s law.

**Irrigation:** Duty, delta, estimation of evapo-transpiration; Crop water requirements; Design of lined and unlined canals, head works, gravity dams and spillways; Design of weirs on permeable foundation; Types of irrigation systems, irrigation methods; Water logging and drainage; Canal regulatory works, cross-drainage structures, outlets and escapes.

**Water and Waste Water:** Quality standards, basic unit processes and operations for water treatment. Drinking water standards, water requirements, basic unit operations and unit processes for surface water treatment, distribution of water. Sewage and sewerage treatment, quantity and characteristics of wastewater. Primary, secondary and tertiary treatment of wastewater, effluent discharge standards. Domestic wastewater treatment, quantity of characteristics of domestic wastewater, primary and secondary treatment. Unit operations and unit processes of domestic wastewater, sludge disposal.

**Air Pollution:** Types of pollutants, their sources and impacts, air pollution meteorology, air pollution control, air quality standards and limits.

**Municipal Solid Wastes:** Characteristics, generation, collection and transportation of solid wastes, engineered systems for solid waste management (reuse/ recycle, energy recovery, treatment and disposal).

**Noise Pollution:** Impacts of noise, permissible limits of noise pollution, measurement of noise and control of noise pollution.

**Transportation Infrastructure:** Highway alignment and engineering surveys; Geometric design of highways – cross-sectional elements, sight distances, horizontal and vertical alignments; Geometric design of railway track; Airport runway length, taxiway and exit taxiway design.

**Highway Pavements:** Highway materials – desirable properties and quality control tests; Design of bituminous paving mixes; Design factors for flexible and rigid pavements; Design of flexible pavement using IRC: 37-2012; Design of rigid pavements using IRC: 58-2011; Distresses in concrete pavements.

**Traffic Engineering:** Traffic studies on flow, speed, travel time – delay and O-D study, PCU, peak hour factor, parking study, accident study and analysis, statistical analysis of traffic data; Microscopic and macroscopic parameters of traffic flow, fundamental relationships; Control devices, signal design by Webster’s method; Types of intersections and channelization; Highway capacity and level of service of rural highways and urban roads.

Principles of surveying; Errors and their adjustment; Maps – scale, coordinate system; Distance and angle measurement – Levelling and trigonometric levelling; Traversing and triangulation survey; Total station; Horizontal and vertical curves.

Photogrammetry – scale, flying height; Remote sensing – basics, platform and sensors, visual image interpretation; Basics of Geographical information system (GIS) and Geographical Positioning system (GPS).

Boolean algebra. Combinational and sequential circuits. Minimization. Number representations and computer arithmetic (fixed and floating point).

Machine instructions and addressing modes. ALU, data‐path and control unit. Instruction pipelining. Memory hierarchy: cache, main memory and secondary storage; I/O interface (interrupt and DMA mode).

Programming in C. Recursion. Arrays, stacks, queues, linked lists, trees, binary search trees, binary heaps, graphs.

Searching, sorting, hashing. Asymptotic worst case time and space complexity. Algorithm design techniques: greedy, dynamic programming and divide‐and‐conquer. Graph search, minimum spanning trees, shortest paths.

Regular expressions and finite automata. Context-free grammars and push-down automata. Regular and contex-free languages, pumping lemma. Turing machines and undecidability.

Lexical analysis, parsing, syntax-directed translation. Runtime environments. Intermediate code generation.

Processes, threads, inter‐process communication, concurrency and synchronization. Deadlock. CPU scheduling. Memory management and virtual memory. File systems.

ER‐model. Relational model: relational algebra, tuple calculus, SQL. Integrity constraints, normal forms. File organization, indexing (e.g., B and B+ trees). Transactions and concurrency control.

Concept of layering. LAN technologies (Ethernet). Flow and error control techniques, switching. IPv4/IPv6, routers and routing algorithms (distance vector, link state). TCP/UDP and sockets, congestion control. Application layer protocols (DNS, SMTP, POP, FTP, HTTP). Basics of Wi-Fi. Network security: authentication, basics of public key and private key cryptography, digital signatures and certificates, firewalls.

C, C++, Java

Network graph, KCL, KVL, Node and Mesh analysis, Transient response of dc and ac networks, Sinusoidal steady‐state analysis, Resonance, Passive filters, Ideal current and voltage sources, The venin’s theorem, Norton’s theorem, Superposition theorem, Maximum power transfer theorem, Two‐port networks, Three phase circuits, Power and power factor in ac circuits.

Coulomb’s Law, Electric Field Intensity, Electric Flux Density, Gauss’s Law, Divergence, Electric field and potential due to point, line, plane and spherical charge distributions, Effect of dielectric medium, Capacitance of simple configurations, Biot‐Savart’s law, Ampere’s law, Curl, Faraday’s law, Lorentz force, Inductance, Magnetomotive force, Reluctance, Magnetic circuits, Self and Mutual inductance of simple configurations.

Representation of continuous and discrete‐time signals, Shifting and scaling operations, Linear Time Invariant and Causal systems, Fourier series representation of continuous periodic signals, Sampling theorem, Applications of Fourier Transform, Laplace Transform and z-Transform.

Single phase transformer: equivalent circuit, phasor diagram, open circuit and short circuit tests, regulation and efficiency; Three phase transformers: connections, parallel operation; Auto‐transformer, Electromechanical energy conversion principles, DC machines: separately excited, series and shunt, motoring and generating mode of operation and their characteristics, starting and speed control of dc motors; Three phase induction motors: principle of operation, types, performance, torque-speed characteristics, no-load and blocked rotor tests, equivalent circuit, starting and speed control; Operating principle of single phase induction motors; Synchronous machines: cylindrical and salient pole machines, performance, regulation and parallel operation of generators, starting of synchronous motor, characteristics; Types of losses and efficiency calculations of electric machines.

Power generation concepts, ac and dc transmission concepts, Models and performance of transmission lines and cables, Series and shunt compensation, Electric field distribution and insulators, Distribution systems, Per‐unit quantities, Bus admittance matrix, Gauss- Seidel and Newton-Raphson load flow methods, Voltage and Frequency control, Power factor correction, Symmetrical components, Symmetrical and unsymmetrical fault analysis, Principles of over‐current, differential and distance protection; Circuit breakers, System stability concepts, Equal area criterion.

Mathematical modeling and representation of systems, Feedback principle, transfer function, Block diagrams and Signal flow graphs, Transient and Steady‐state analysis of linear time invariant systems, Routh-Hurwitz and Nyquist criteria, Bode plots, Root loci, Stability analysis, Lag, Lead and Lead‐Lag compensators; P, PI and PID controllers; State space model, State transition matrix.

Bridges and Potentiometers, Measurement of voltage, current, power, energy and power factor; Instrument transformers, Digital voltmeters and multimeters, Phase, Time and Frequency measurement; Oscilloscopes, Error analysis.

Characteristics of diodes, BJT, MOSFET; Simple diode circuits: clipping, clamping, rectifiers; Amplifiers: Biasing, Equivalent circuit and Frequency response; Oscillators and Feedback amplifiers; Operational amplifiers: Characteristics and applications; Simple active filters, VCOs and Timers, Combinational and Sequential logic circuits, Multiplexer, Demultiplexer, Schmitt trigger, Sample and hold circuits, A/D and D/A converters, 8085 Microprocessor: Architecture, Programming and Interfacing.

Characteristics of semiconductor power devices: Diode, Thyristor, Triac, GTO, MOSFET, IGBT; DC to DC conversion: Buck, Boost and Buck-Boost converters; Single and three phase configuration of uncontrolled rectifiers, Line commutated thyristor based converters, Bidirectional ac to dc voltage source converters, Issues of line current harmonics, Power factor, Distortion factor of ac to dc converters, Single phase and three phase inverters, Sinusoidal pulse width modulation.

Network solution methods: nodal and mesh analysis; Network theorems: superposition, Thevenin and Norton’s, maximum power transfer; Wye‐Delta transformation; Steady state sinusoidal analysis using phasors; Time domain analysis of simple linear circuits; Solution of network equations using Laplace transform; Frequency domain analysis of RLC circuits; Linear 2‐port network parameters: driving point and transfer functions; State equations for networks.

Continuous-time signals: Fourier series and Fourier transform representations, sampling theorem and applications; Discrete-time signals: discrete-time Fourier transform (DTFT), DFT, FFT, Z-transform, interpolation of discrete-time signals; LTI systems: definition and properties, causality, stability, impulse response, convolution, poles and zeros, parallel and cascade structure, frequency response, group delay, phase delay, digital filter design techniques.

Energy bands in intrinsic and extrinsic silicon; Carrier transport: diffusion current, drift current, mobility and resistivity; Generation and recombination of carriers; Poisson and continuity equations; P-N junction, Zener diode, BJT, MOS capacitor, MOSFET, LED, photo diode and solar cell; Integrated circuit fabrication process: oxidation, diffusion, ion implantation, photolithography and twin-tub CMOS process.

Small signal equivalent circuits of diodes, BJTs and MOSFETs; Simple diode circuits: clipping, clamping and rectifiers; Single-stage BJT and MOSFET amplifiers: biasing, bias stability, mid-frequency small signal analysis and frequency response; BJT and MOSFET amplifiers: multi-stage, differential, feedback, power and operational; Simple op-amp circuits; Active filters; Sinusoidal oscillators: criterion for oscillation, single-transistor and op- amp configurations; Function generators, wave-shaping circuits and 555 timers; Voltage reference circuits; Power supplies: ripple removal and regulation.

Number systems; Combinatorial circuits: Boolean algebra, minimization of functions using Boolean identities and Karnaugh map, logic gates and their static CMOS implementations, arithmetic circuits, code converters, multiplexers, decoders and PLAs; Sequential circuits: latches and flip‐flops, counters, shift‐registers and finite state machines; Data converters: sample and hold circuits, ADCs and DACs; Semiconductor memories: ROM, SRAM, DRAM; 8-bit microprocessor (8085): architecture, programming, memory and I/O interfacing.

Basic control system components; Feedback principle; Transfer function; Block diagram representation; Signal flow graph; Transient and steady-state analysis of LTI systems; Frequency response; Routh-Hurwitz and Nyquist stability criteria; Bode and root-locus plots; Lag, lead and lag-lead compensation; State variable model and solution of state equation of LTI systems.

Random processes: autocorrelation and power spectral density, properties of white noise, filtering of random signals through LTI systems; Analog communications: amplitude modulation and demodulation, angle modulation and demodulation, spectra of AM and FM, superheterodyne receivers, circuits for analog communications; Information theory: entropy, mutual information and channel capacity theorem; Digital communications: PCM, DPCM, digital modulation schemes, amplitude, phase and frequency shift keying (ASK, PSK, FSK), QAM, MAP and ML decoding, matched filter receiver, calculation of bandwidth, SNR and BER for digital modulation; Fundamentals of error correction, Hamming codes; Timing and frequency synchronization, inter-symbol interference and its mitigation; Basics of TDMA, FDMA and CDMA.

Electrostatics; Maxwell’s equations: differential and integral forms and their interpretation, boundary conditions, wave equation, Poynting vector; Plane waves and properties: reflection and refraction, polarization, phase and group velocity, propagation through various media, skin depth; Transmission lines: equations, characteristic impedance, impedance matching, impedance transformation, S-parameters, Smith chart; Waveguides: modes, boundary conditions, cut-off frequencies, dispersion relations; Antennas: antenna types, radiation pattern, gain and directivity, return loss, antenna arrays; Basics of radar; Light propagation in optical fibers.

Voltage and current sources: independent, dependent, ideal and practical; v-i relationships of resistor, inductor, mutual inductor and capacitor; transient analysis of RLC circuits with dc excitation.

Kirchoff’s laws, mesh and nodal analysis, superposition, Thevenin, Norton, maximum power transfer and reciprocity theorems.

Peak, average and rms values of ac quantities; apparent-, active- and reactive powers; phasor analysis, impedance and admittance; series and parallel resonance, locus diagrams, realization of basic filters with R, L and C elements.

One-port and two-port networks, driving point impedance and admittance, open, and short circuit parameters.

Periodic, aperiodic and impulse signals; Laplace, Fourier and z-transforms; transfer function, frequency response of first and second order linear time invariant systems, impulse response of systems; convolution, correlation. Discrete time system: impulse response, frequency response, pulse transfer function; DFT and FFT; basics of IIR and FIR filters.

Feedback principles, signal flow graphs, transient response, steady-state-errors, Bode plot, phase and gain margins, Routh and Nyquist criteria, root loci, design of lead, lag and lead-lag compensators, state-space representation of systems; time-delay systems; mechanical, hydraulic and pneumatic system components, synchro pair, servo and stepper motors, servo valves; on-off, P, P-I, P-I-D, cascade, feedforward, and ratio controllers.

Characteristics and applications of diode, Zener diode, BJT and MOSFET; small signal analysis of transistor circuits, feedback amplifiers. Characteristics of operational amplifiers; applications of opamps: difference amplifier, adder, subtractor, integrator, differentiator, instrumentation amplifier, precision rectifier, active filters and other circuits. Oscillators, signal generators, voltage controlled oscillators and phase locked loop.

Combinational logic circuits, minimization of Boolean functions. IC families: TTL and CMOS. Arithmetic circuits, comparators, Schmitt trigger, multi-vibrators, sequential circuits, flip- flops, shift registers, timers and counters; sample-and-hold circuit, multiplexer, analog-to- digital (successive approximation, integrating, flash and sigma-delta) and digital-to- analog converters (weighted R, R-2R ladder and current steering logic). Characteristics of ADC and DAC (resolution, quantization, significant bits, conversion/settling time); basics of number systems, 8-bit microprocessor and microcontroller: applications, memory and input-output interfacing; basics of data acquisition systems.

SI units, systematic and random errors in measurement, expression of uncertainty – accuracy and precision index, propagation of errors. PMMC, MI and dynamometer type instruments; dc potentiometer; bridges for measurement of R, L and C, Q-meter. Measurement of voltage, current and power in single and three phase circuits; ac and dc current probes; true rms meters, voltage and current scaling, instrument transformers, timer/counter, time, phase and frequency measurements, digital voltmeter, digital multimeter; oscilloscope, shielding and grounding.

Resistive, capacitive, inductive-, piezoelectric, Hall effect sensors and associated signal conditioning circuits; transducers for industrial instrumentation: displacement (linear and angular), velocity, acceleration, force, torque, vibration, shock, pressure (including low pressure), flow (differential pressure, variable area, electromagnetic, ultrasonic, turbine and open channel flow meters) temperature (thermocouple, bolometer, RTD (3/4 wire), thermistor, pyrometer and semiconductor); liquid level, pH, conductivity and viscosity measurement.

Amplitude and frequency modulation and demodulation; Shannon’s sampling theorem, pulse code modulation; frequency and time division multiplexing, amplitude, phase, frequency, pulse shift keying for digital modulation; optical sources and detectors: LED, laser, photo-diode, light dependent resistor and their characteristics; interferometer: applications in metrology; basics of fiber optic sensing.